

VINEGAR FILTRATION

CROSS-FLOW FILTRATION OF VINEGAR

CETOTEC filtration systems are based on the cross-flow principle combined with a high performance membrane offering optimal support for your production! Compact and reliable!

Description:

CETOTEC Microfiltration systems are applicable for the filtration of different kinds of vinegar such as alcohol vinegar, wine and cider vinegar etc. Liqui-Flux®-Modules from polypropylene, embedded in polysulfone housing, guarantee highest possible performance and durability. The systems are based on customer requirements and can be delivered from 300 l/h up to 3.200 l/h. An automatic backflush system combined with a simple and efficient cleaning procedure enables a smooth filtration. Equipped with an integrated process control, the fully automized filtration systems are high performance partners in a compact space.

Function:

Cross flow filtration involves mainly micro-porous hollow fiber membranes. The raw vinegar is conducted at high speed diagonally to the membrane surface thus preventing the spontaneous formation of a coating. The constant flow ensures a clean surface of the membrane which is essential for a high, stable filtration performance.

Advantages:

- All parts necessary for filtration are efficiently arranged in a compact space
- No consumables necessary
- Reliable and fully automized process control

CROSSFLOW FILTER

Тур	No. of modu- les	Filter surface m ²	Capillary dia- meter	Pore size
CB01	1	6,1	1,1 mm	0,2 μm
CB02	2	12,2	1,1 mm	0,2 μm
CB04	4	24,4	1,1 mm	0,2 μm
CB06	6	36,6	1,1 mm	0,2 μm
CB08	8	48,8	1,1 mm	0,2 μm
CB12	12	73,2	1,1 mm	0,2 μm